China factory 57bygh 57mm NEMA 23 Hybrid Stepper Motor with Planetary Gearbox for Medical Equipment CNC Router Machine dc motor

Product Description


57BYGH 57mm Nema 23 Hybrid Stepper Motor with Planetary Gearbox for Medical Equipment CNC Router Machine

Product Description

GenHangZhou Specification
Item Specifications
Step Angle 1.8° or 0.9°
Temperature Rise 80ºCmax
Ambient Temperature -20ºC~+50ºC
Insulation Resistance 100 MΩ Min. ,500VDC
Dielectric Strength 500VAC for 1minute
Shaft Radial Play 0.02Max. (450g-load)
Shaft Axial Play 0.08Max. (450g-load)
Max. radial force 75N (20mm from the flange)
Max. axial force 15N


1. The magnetic steel is high grade,we usually use the SH level type.
2. The rotor is be coated,reduce burrs,working smoothly,less noise. We test the stepper motor parts step by step.
3. Stator is be test and rotor is be test before assemble.
4. After we assemble the stepper motor, we will do 1 more test for it, to make sure the quality is good.

JKONGMOTOR stepping motor is a motor that converts electrical pulse signals into corresponding angular displacements or linear displacements. This small stepper motor can be widely used in various fields, such as a 3D printer, stage lighting, laser engraving, textile machinery, medical equipment, automation equipment, etc.

1.8 Degree Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. g.cm2 Kg
JK57HS41-1006 1.8 41 1 7.1 8 0.48 6 250 150 0.47
JK57HS41-2008 1.8 41 2 1.4 1.4 0.39 8 250 150 0.47
JK57HS41-2804 1.8 41 2.8 0.7 1.4 0.55 4 250 150 0.47
JK57HS51-1006 1.8 51 1 6.6 8.2 0.72 6 300 230 0.59
JK57HS51-2008 1.8 51 2 1.8 2.7 0.9 8 300 230 0.59
JK57HS51-2804 1.8 51 2.8 0.83 2.2 1.01 4 300 230 0.59
JK57HS56-2006 1.8 56 2 1.8 2.5 0.9 6 350 280 0.68
JK57HS56-2108 1.8 56 2.1 1.8 2.5 1 8 350 280 0.68
JK57HS56-2804 1.8 56 2.8 0.9 2.5 1.2 4 350 280 0.68
JK57HS64-2804 1.8 64 2.8 0.8 2.3 1 4 400 300 0.75
JK57HS76-2804 1.8 76 2.8 1.1 3.6 1.89 4 600 440 1.1
JK57HS76-3006 1.8 76 3 1 1.6 1.35 6 600 440 1.1
JK57HS76-3008 1.8 76 3 1 1.8 1.5 8 600 440 1.1
JK57HS82-3004 1.8 82 3 1.2 4 2.1 4 1000 600 1.2
JK57HS82-4008 1.8 82 4 0.8 1.8 2 8 1000 600 1.2
JK57HS82-4204 1.8 82 4.2 0.7 2.5 2.2 4 1000 600 1.2
JK57HS100-4204 1.8 100 4.2 0.75 3 3 4 1100 700 1.3
JK57HS112-3004 1.8 112 3 1.6 7.5 3 4 1200 800 1.4
JK57HS112-4204 1.8 112 4.2 0.9 3.8 3.1 4 1200 800 1.4

0.9 Degree Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH No. g.cm2 Kg
JK57HM41-1006 0.9 41 1 5.7 8 3.9 6 210 120 0.45
JK57HM41-2804 0.9 41 2.8 0.7 2.2 5 4 210 120 0.45
JK57HM51-2006 0.9 51 2 1.6 2.2 7.2 6 380 280 0.68
JK57HM56-1006 0.9 56 1 7.4 17.5 9 6 400 300 0.7
JK57HM56-2006 0.9 56 2 1.8 4.5 9 6 400 300 0.7
JK57HM56-2804 0.9 56 2.8 0.9 3.3 12 4 400 300 0.7
JK57HM76-1006 0.9 76 1 8.6 23 13.5 6 680 480 1
JK57HM76-2006 0.9 76 2 3 7 13.5 6 680 480 1
JK57HM76-2804 0.9 76 2.8 1.15 5.6 18 4 680 480 1


3 Phase Nema 23 Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH g.cm2 Kg
JK57H3P42-5206 1.2 42 5.2 1.3 1.4 4.5 210 110 0.45
JK57H3P56-5606 1.2 56 5.6 0.7 0.7 9 400 300 0.75
JK57H3P79-5206 1.2 79 5.2 0.9 1.5 15 680 480 1.1


Nema 23 Round Type Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH No. g.cm2 Kg
JK57HY41-0406 1.8 41 0.4 30 30 2.88 6 180 57 0.54
JK57HY41-1564 1.8 41 1.56 1.8 3.6 4 4 180 57 0.54
JK57HY51-0426 1.8 51 0.42 29 36 4.97 6 350 110 0.6
JK57HY51-2804 1.8 51 2.8 0.85 2.1 6.9 4 350 110 0.6
JK57HY56-0606 1.8 56 0.6 20 32 6 6 420 135 0.65
JK57HY56-2004 1.8 56 2 3 7 8 4 420 135 0.65
JK57HY76-1506 1.8 76 1.5 3.6 6 9 6 720 200 0.95
JK57HY76-4004 1.8 76 4 0.88 2.6 14 4 720 200 0.95


Jkongmotor Other Hybrid Stepper Motor:

Motor series Phase No. Step angle Motor length Motor size Leads No. Holding torque
Nema 8 2 phase 1.8 degree 30~42mm 20x20mm 4
Nema 11 2 phase 1.8 degree 32~51mm 28x28mm 4 or 6
Nema 14 2 phase 0.9 or 1.8 degree 27~42mm 35x35mm 4
Nema 16 2 phase 1.8 degree 20~44mm 39x39mm 4 or 6
Nema 17 2 phase 0.9 or 1.8 degree 25~60mm 42x42mm 4 or 6
Nema 23 2 phase 0.9 or 1.8 degree 41~112mm 57x57mm 4 or 6 or 8 0.39~3.1N.m
3 phase 1.2 degree 42~79mm 57x57mm 0.45~1.5N.m
Nema 24 2 phase 1.8 degree 56~111mm 60x60mm 8 1.17~4.5N.m
Nema 34 2 phase 1.8 degree 67~155mm 86x86mm 4 or 8 3.4~12.2N.m
3 phase 1.2 degree 65~150mm 86x86mm 2~7N.m
Nema 42 2 phase 1.8 degree 99~201mm 110x110mm 4 11.2~28N.m
3 phase 1.2 degree 134~285mm 110x110mm 8~25N.m
Nema 52 2 phase 1.8 degree 173~285mm 130x130mm 4 13.3~22.5N.m
3 phase 1.2 degree 173~285mm 130x130mm 13.3~22.5N.m
Above only for representative products, products of special request can be made according to the customer request.


Detailed Photos

                                       Brushless Dc Motor Kit                                                                      Stepper Motor with Encoder

                   Linear Stepper Motor                              3 4 Axis Stepper Motor Kits                       Hollow Shaft Stepper Motor


                        Bldc Motor                                              Brushed Dc Motor                                      Hybrid Stepper Motor                                   


Company Profile

HangZhou CZPT Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a solid foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:


Shipping Cost:

Estimated freight per unit.

To be negotiated
Application: Printing Equipment
Speed: Variable Speed
Number of Stator: Two-Phase


Customized Request


Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China factory 57bygh 57mm NEMA 23 Hybrid Stepper Motor with Planetary Gearbox for Medical Equipment CNC Router Machine   dc motor	China factory 57bygh 57mm NEMA 23 Hybrid Stepper Motor with Planetary Gearbox for Medical Equipment CNC Router Machine   dc motor
editor by CX 2023-04-24